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critical exponents are computed to two-loop order. Possible applications to condensed

matter physics in 3 space-time dimensions are discussed.
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1. Introduction

A basic result in the quantum field theory of fundamental particles in 4 space-time di-

mensions is that requiring Lorentz invariance for spin-1
2 particles necessarily leads to the

free Dirac lagrangian. Here “spin-1
2” refers to the 3-dimensional rotational subgroup of the

Lorentz group. The Lie algebra of the Lorentz group is SU(2) ⊗ SU(2), where one linear

combination of the two SU(2) symmetries is identified as angular momentum; thus spin

representations are promoted to Lorentz representations in a straightforward manner.

This paper in part deals with the following basic question. Suppose one wishes to de-

scribe the quantum field theory of spin-1
2 particles in a physical context where the dispersion

relation happens to be Lorentz invariant, but unlike in fundamental particle physics the

full Lorentz invariance is not evidently required. In particular, we have in mind systems in

condensed matter physics where the relativistic dispersion relation arises as a consequence

of special properties of the system, and what plays the role of the speed of light is some

material-dependent velocity. For instance, the effective mass of electronic quasi-particles
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may go zero because one is near a quantum critical point or more simply because of band

structure as in 2-dimensional graphene [1, 2], and massless particles, like photons, usu-

ally require a relativistic dispersion relation. Under these circumstances, the question is

whether such a quantum field theory must necessarily be that of a Dirac fermion. In the

case of graphene, the fermionic quasi-particles do turn out to be described by the massless

Dirac equation. The reason for this is not an intrinsic Lorentz invariance, but rather that

the continuum limit of a tight binding model on a hexagonal lattice gives a hamiltonian

that is first order in derivatives, and near the Fermi points the particles are massless.

In this paper we will study an alternative to the Dirac theory. The model is built out

of an N -component complex fermionic field with a non-Dirac, two-derivative action with

a Lorentz-invariant dispersion relation. This model has a symplectic Sp(2N) symmetry.

If this symmetry is viewed as an internal symmetry, then the fields are Lorentz scalars

and the theory is Lorentz invariant but with the “wrong” statistics. However, since the

Lie group Sp(2N) has an SO(3) subgroup, we can identify the latter with rotational spin.

Therefore our model can naturally describe spin-1
2 particles. The fermionic statistics is

then in accordance with the spin-statistics connection, which requires spin-1
2 particles to

be described by fermionic fields. However since the rotational spin-1
2 is not promoted to a

representation of the Lorentz group as in the Dirac theory, our model is strictly speaking

not Lorentz invariant; hence the terminology “semi-Lorentz” invariant.

The most serious potential problem of this theory concerns its unitarity, and this is

addressed in the present paper. We show that the hamiltonian is pseudo-hermitian,

H† = CHC , (1.1)

where C is a unitary operator satisfying C2 = 1. This generalization of hermiticity was

considered long ago by Pauli [3], and more recently by Mostafazadeh [4] as a way of

explaining the real spectrum and addressing the unitarity issue in PT symmetric quantum

mechanics [5, 6]. The important point is that by suitably defining a C-dependent inner

product, pseudo-hermiticity of H is sufficient to ensure a unitary (i.e., norm-preserving)

time evolution. This is explained in section II. One should also point out that taking a

non-relativistic limit in the kinetic term one obtains a perfectly unitary second-quantized

description of interacting fermions.

The identification of the SO(3) Lie sub-algebra of Sp(2N) with rotational spin is de-

scribed in section III. There we also study the discrete space-time symmetries of time-

reversal and parity, and show how the spin generators transform properly under them.

Another possible signature of non-unitarity comes from studying finite-size or finite-

temperature effects. We show in section IV that whereas imposing periodic boundary

conditions leads to a negative coefficient in the free energy, correctly imposing anti-periodic

boundary conditions, as is normally appropriate for fermions, leads to a positive coefficient.

(In two dimensions this coefficient is related to the Virasoro central charge.)

Symplectic fermions are interesting for potential applications to critical phenomena.

First of all, in D = 3, since the group of spacial rotations is simply U(1), there are less

constraints coming from Lorentz invariance. More importantly, unlike Dirac fermions,

four-fermion interactions in D = 3 drive the theory to some novel low-energy fixed points
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that are fermionic versions of the Wilson-Fisher [7] fixed points. The reason is simple: in

three dimensions a symplectic fermion χ has classical (or mean field) scaling dimension

1/2, whereas Dirac fermions ψ have dimension 1; therefore χ4 is a dimension-2 operator

and is relevant in D = 3, whereas ψ4 is irrelevant. This was the original motivation for

the work [8], where it was attempted to interpret these fixed points at N = 2 as examples

of deconfined quantum criticality [9]. Although it remains unclear whether our fermionic

critical point can correctly describe deconfined quantum criticality as defined in [9], the

resolution of the unitarity problem as presented in this paper is sufficient motivation to

analyze the critical exponents further. In sections V and VI we extend the analysis of [8]

to two-loop order. In particular, we show that some of the critical exponents can be

obtained by analytically continuing known results for the O(M) Wilson-Fisher fixed point

to M = −2N .1. We also calculate the critical exponents for composite bilinear operators,

which to our knowledge have not been studied for the O(M) fixed points.2

The correspondence of our model with O(M) for negative M is merely formal and not

expected to be valid for all physical properties. First of all, the symmetries of the models

are different. It should also be clear from the fact that in applications to condensed matter

physics, our model has a Fermi surface, etc. Some concrete distinctions in the finite-size

effects are made in section IV.

In section VII we speculate on some possible applications to 2+1 dimensional quantum

criticality in condensed matter physics. In the broadest terms, at the fixed point our model

can be viewed as a quantum critical theory of spinons, where the symplectic fermions

are fundamental spinon fields. For N = 2 components, we discuss possible applications

to quantum anti-ferromagnetism, where the magnetic order parameter ~n is a composite

operator in terms of spinons ~n = χ†~σ χ. This compositeness is the same as in deconfined

quantum criticality [9], however our model is different since it has no U(1) gauge field. We

show that two-point correlation exponents (η) are rather large compared to the bosonic

Wilson-Fisher fixed point, and this is mainly due to the compositeness of ~n. By treating

both cases, we show this is true irrespective of whether the particles are bosons or fermions.

Section VIII contains a summary of our main findings and some conclusions.

2. Pseudo-hermiticity and unitarity of complex scalar fermions

Let χ denote an N -component complex field and consider the following action in D = d+1

dimensional Minkowski space:

Sχ =

∫

ddx dt
[

∂µχ∂µχ − m2 χχ − 4π2g (χχ)2
]

, (2.1)

where χχ =
∑N

α=1 χαχα, and ∂µ∂µ = ∂2
t − ∂2

x. If χ is taken to be a Lorentz scalar, then

the model is Lorentz invariant. The above action has an explicit internal U(N) symmetry.

1This feature was not properly appreciated in [8] due to an error by a factor of 2 in the critical exponent

γχ.
2The anomalous dimension of such bilinear operators was incorrectly assumed, to lowest order, to be

twice the dimension of the fundamental field χ in [8].
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In the next section we show that, if χ is a fermion, then there is actually a hidden Sp(2N)

symmetry.

We wish to quantize this model with χ taken to be a fermionic (Grassman) field.

The conjugate-momentum fields are πχ = −∂tχ and πχ = ∂tχ. They obey the canonical

anti-commutation relations

{χα(x, t), ∂tχ
β(x′, t)} = −{χα(x, t), ∂tχ

β(x′, t)} = iδαβδ(d)(x− x′) . (2.2)

The hamiltonian for this system is

H =

∫

ddx
[

∂tχ∂tχ + ∂xχ∂xχ + m2 χχ + 4π2g (χχ)2
]

. (2.3)

Note that because of the fermion statistics the interaction term vanishes for N = 1.

Consider first the free theory with g = 0. Suppressing the component indices, the

fields have the following mode expansions consistent with the equations of motion:

χ(x) =

∫

ddk

(2π)d/2
√

2ωk

(

b†
k,− e−ik·x + bk,+ eik·x

)

,

χ(x) =

∫

ddk

(2π)d/2
√

2ωk

(

−bk,− eik·x + b†
k,+ e−ik·x

)

, (2.4)

where ωk =
√

k2 + m2 and k · x = ωk t − k · x. The extra minus sign in the b− term in χ

is chosen so that the anti-commutation relations (2.2) lead to the standard non-vanishing

canonical relations

{bk+, b†
k′+} = {bk−, b†

k′−} = δ(d)(k − k′) , (2.5)

where it is understood that the field operators belong to the same field component. Of

course, the extra sign would be unnecessary if χ was a bosonic field.

With the above definitions the fields have the required properties under causality (see

for instance [11]), namely {χα(x), χβ(y)} = {χα(x), χβ(y)} = 0 and

{χα(x), χβ(y)} = δαβ [∆+(x − y) − ∆+(y − x)] , (2.6)

where

∆+(x) =

∫

ddk

(2π)d 2ωk

eik·x . (2.7)

Since ∆+(x) depends only on x2 and is well-defined for space-like separation (x2 < 0), it

follows that χ(x) and χ(y) anti-commute for space-like separated points x and y. This im-

plies that the hamiltonian densities H(x) and H(y) also commute at space-like separation.

We will return to the spin-statistics connection below.

In terms of the momentum-space modes, the free hamiltonian is

H =

∫

ddk ωk

(

b†
k+bk+ − bk−b†

k−

)

=

∫

ddk ωk

(

b†
k+bk+ + b†

k−bk−

)

+ const. (2.8)

We can discard the infinite constant in the above equation, which is equivalent to normal-

ordering the hamiltonian. Let us define the vacuum |0〉 as the state being annihilated

– 4 –



J
H
E
P
1
0
(
2
0
0
7
)
0
2
7

by b±. As a result, all states have positive energy. The one-particle states are doubly

degenerate:

H b†
k,±|0〉 = H|k,±〉 = ωk|k,±〉 . (2.9)

For N = 1 the theory is manifestly invariant under a U(1) symmetry. The correspond-

ing conserved current satisfying ∂µJµ = 0 is Jµ = i[(∂µχ)χ−χ∂µχ]. The conserved charge

Q =
∫

ddxJt(x) can be expressed as

Q =

∫

ddk ωk

(

b†
k+bk+ + bk−b†

k−

)

. (2.10)

With these conventions, the operators b†+ and b− have charge Q = 1, whereas b†− and b+

have charge Q = −1.

The usual spin-statistics connection (see for instance [11]) is based on causality as

described above, along with the requirement that the hamiltonian must be constructed out

of χ and its hermitian adjoint in order for it to be hermitian. The latter is violated here:

because of the extra minus sign in the mode expansion of χ for the fermionic case, one

sees that unlike for the bosonic case, χ is not the hermitian adjoint of χ. Let us introduce

a unitary operator C satisfying C†C = 1 and C = C†, which is defined by the properties

Cb±C = ±b± and Cb†±C = ±b†±. Then the relation between χ and χ can be expressed as

χ = Cχ†C . (2.11)

Since (χχ)† = CχχC, the hamiltonian satisfies the “intertwined” hermiticity condition

H† = CHC . (2.12)

The above is also true in the interacting theory since [(χχ)2]† = C(χχ)2C. (Note that for

the free theory in momentum space, C actually commutes with H as can be seen from

eq. (2.8), and hence the above equation is trivially satisfied; however, this is no longer the

case in the interacting theory.)

Hamiltonians satisfying eq. (2.12) were considered long ago by Pauli [3] and more

recently by Mostafazadeh [4] in connection with PT symmetric quantum mechanics [5, 6].

We will follow the previously introduced terminology and refer to such hamiltonians as

C-pseudo-hermitian. Quantum mechanics based on pseudo-hermitian operators has some

very desirable properties, which parallel the standard ones. First of all, as we now explain,

a pseudo-hermitian hamiltonian can still define a unitary quantum mechanics if one defines

the inner product appropriately. Specifically, consider a new inner product defined as

〈ψ′|ψ〉c ≡ 〈ψ′|C|ψ〉 . (2.13)

Then probability is conserved with respect to this modified inner product, i.e., the norms

of states are preserved under time evolution:

〈ψ′(t)|ψ(t)〉c = 〈ψ′|eiH†tCe−iHt|ψ〉 = 〈ψ′|CeiHtC2e−iHt|ψ〉 = 〈ψ′|ψ〉c . (2.14)

– 5 –



J
H
E
P
1
0
(
2
0
0
7
)
0
2
7

Pseudo-hermiticity also ensures that the eigenvalues of H are real. To see this, let |ψE〉
denote an eigenstate of H with eigenvalue E. Then

(E − E∗) 〈ψE |ψE〉c = 〈ψE |(CH − H†C)|ψE〉 = 0 . (2.15)

Therefore eigenstates of H with non-zero C-norm necessarily have real energies. Other

properties are proven in [4].

In the sequel it will be convenient to define the pseudo-hermitian adjoint A†c of any

operator A as the proper hermitian adjoint with respect to the C-inner product:

〈ψ′|A|ψ〉∗c ≡ 〈ψ|A†c |ψ′〉c , (2.16)

which implies

A†c = CA†C . (2.17)

The pseudo-hermiticity condition on the hamiltonian then simply reads H†c = H. One

can easily establish that this pseudo-hermitian adjoint satisfies the usual rules, e.g.

(AB)†c = B†cA†c ,

(aA + bB)†c = a∗A†c + b∗B†c , (2.18)

where A,B are operators and a, b are complex numbers.

3. Sp(2N) symmetry and rotational spin

The action (2.1) has an explicit U(N) symmetry irrespective of whether χ is bosonic or

fermionic. If χ is bosonic, then the action expressed in terms of real fields has an O(2N)

symmetry. On the other hand, if χ is a fermionic field, then the symmetry is Sp(2N). Even

for N = 1, the Sp(2) symmetry of the fermionic theory is larger than the U(1) symmetry

of the bosonic theory. To manifest this symmetry explicitly, let us express each component

χα as

χα =
1√
2

(ηα
1 + iηα

2 ) , χα =
−i√

2
(ηα

1 − iηα
2 ) . (3.1)

We now introduce the 2× 2 anti-symmetric matrix ǫ =
(

0 1
−1 0

)

and the 2N × 2N matrix

ǫN = ǫ ⊗ 1N . Arranging the real fields ηα
i into a 2N vector η = (η1

1 , η
1
2 , η

2
1 , η2

2 , . . . , η
N
1 , ηN

2 ),

one has

χχ =
1

2
ηT ǫNη . (3.2)

This bilinear form has the symmetry η → Mη, where MT ǫNM = ǫN . This is the defining

relation for M to be an element of the group Sp(2N).

We will need the Lie algebra of Sp(2N). Let M = eX , in which case the above relation

implies XT ǫN = −ǫNX. A linearly independent basis for X is then {1 ⊗ A,σx ⊗ tx, σy ⊗
ty, σz⊗tz}, where A is an N×N anti-symmetric matrix, σi are the Pauli matrices, and ti are

N ×N symmetric matrices [12]. For any N the algebra Sp(2N) has an SO(3) sub-algebra

generated by σi ⊗ 1N , which can in principle be identified with spin. It also has an SO(N)
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sub-algebra generated by the matrices A, and an SU(N) sub-algebra generated by 1⊗A and

σz ⊗ tz, where tz is traceless. The Lie algebra Sp(2) is equivalent to SO(3) ∼= SU(2). Note

that the N = 2 case therefore has two different SO(3) sub-algebras that could potentially

be identified with spin.

3.1 Canonical quantization and pseudo-hermiticity

For simplicity, let us specialize to the free theory with N = 1 component (the generalization

to N 6= 1 is straightforward). Then the action takes the form

S =

∫

ddx dt
(

∂µη1∂µη2 − m2η1η2

)

. (3.3)

The canonical momenta are π1 = ∂tη2 and π2 = −∂tη1, which leads to the equal-time

anti-commutation relations

{η1(x, t), ∂tη2(x
′, t)} = −{η2(x, t), ∂tη1(x

′, t)} = iδ(d)(x − x′) . (3.4)

The pseudo-hermiticity of the hamiltonian exactly parallels the discussion in section

II. If one expands the fields as

η1(x) =

∫

ddk

(2π)d/2
√

2ωk

(

a†
k+ e−ik·x + ak− eik·x

)

,

η2(x) =

∫

ddk

(2π)d/2
√

2ωk

(

−a†
k− e−ik·x + ak+ eik·x

)

, (3.5)

then eq. (3.4) implies

{ak−, a†
k′−} = {ak+, a†

k′+} = δ(d)(k − k′) (3.6)

In terms of these modes, the hamiltonian is

H =

∫

ddkωk

(

a†
k+ak+ − ak−a†

k−

)

. (3.7)

The relation between η2 and η1 is η2 = Cη†1C, where C flips the sign of a− and a†−, i.e.

Ca±C = ±a± and Ca†±C = ±a†±. The hamiltonian is pseudo-hermitian, H† = CHC, in

both the free and interacting theory. Thus, for the reasons explained in section II, it defines

a unitary time evolution.

3.2 Sp(2N) conserved charges

For N = 1 the Sp(2) symmetry is

η =

(

η1

η2

)

→ eXη , (3.8)

where X = ~α · ~σ with arbitrary parameters αi. The conserved currents following from

Noether’s construction read

Jz
µ = − i

2
(η1∂µη2 + η2∂µη1) , J+

µ = −iη1∂µη1 , J−
µ = iη2∂µη2 . (3.9)
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Using the equations of motion and fermion statistics (η2
i = 0) one readily verifies that

∂µ ~Jµ = 0. The conserved charges are then defined as usual as ~S =
∫

ddx ~Jt. In terms of

the creation and annihilation operators, they take the form

Sz =
1

2

∫

ddk (a†
k+ak+ − a†

k−ak−) , S+ =

∫

ddk a†
k+ak− , S− =

∫

ddk a†
k−ak+ .

(3.10)

As expected, these charges satisfy the Sp(2) ∼= SO(3) algebra [Sz, S
±] = ±S±, [S+, S−] =

2Sz with the identification S± = Sx ± iSy.

Using the pseudo-hermiticity of the hamiltonian, one finds that the above conserved

charges have the pseudo-hermiticity properties (Sz)
†c = Sz, (S±)†c = −S∓. This implies

that pseudo-hermitian conjugation of the Sp(2) generators is an inner-automorphism of the

algebra:

(~S)†c = eiπSz ~S e−iπSz . (3.11)

3.3 Identifying the spin

The spin-statistics connection requires that particles with half-integer spin under rotations

be quantized as fermions. Since the Lie algebra Sp(2N) has an SO(3) sub-algebra generated

by ~σ ⊗ 1N , it is natural to try and identify this SO(3) sub-algebra with spin (i.e., spacial

rotations).

Again for simplicity let us consider N = 1 component symplectic fermions. The

one-particle states |k,±〉 = a†
k±|0〉 of energy ωk have spin Sz |k,±〉 = ±1

2 |k,±〉, so that

a†+ and a†− create spin-up and spin-down particles, respectively. A further check of this

identification comes from considerations of time-reversal symmetry, to which we now turn.

3.4 Time reversal and parity

Let T denote the time-reversal operator. Since T is anti-linear, it can be written as

T = UK, where U is unitary and K complex conjugates c-numbers: Kz = z∗K. Consider

spin-1
2 particles, where spin is represented by the Pauli matrices ~σ. Since spin is odd under

time reversal, T ~σ T −1 = −~σ, which implies U~σ∗U † = −~σ. The well-known solution to this

equation is U = σy. Since time reversal also flips the sign of momentum, we are led to

define

T ak,±T −1 = ±i a−k,∓ , T a†
k,±T −1 = ∓i a†−k,∓ . (3.12)

As is well known, due to the anti-unitarity, T 2 = −1 on one-particle states of spin 1
2 .

Using the above transformations in eq. (3.10), one sees that the Sp(2) generators have

the correct transformation properties to be identified as rotational spin:

T ~S T −1 = −~S . (3.13)

From the form of eq. (3.7) it follows that the hamiltonian is invariant under time-reversal,

i.e. T H T −1 = H.

On the modes, parity simply flips the sign of momenta, i.e. Pak,±P = a−k,±, and

similarly for a†±. The hamiltonian is thus also invariant under parity.
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4. Free energy and finite size effects

Finite-size effects are another probe of the unitarity of a theory. Let us therefore con-

sider our model embedded in the geometry of d-dimensional flat space with periodic time

described by a circle of circumference β, i.e., Rd ⊗ S1. We will use the language of quan-

tum statistical mechanics and identify β = 1/T with T being the temperature. The

d-dimensional volume of Rd will be denoted as V .

In Euclidean space the action is

Sχ =

∫

dDx
[

∂χ∂χ + m2χχ + 4π2g (χχ)2
]

, (4.1)

where D = d + 1 is the Euclidean space-time dimension, ∂2 =
∑D

i=1 ∂2
i , and as before χ is

an N -component complex fermion field. In order to make certain arguments in the sequel,

let us introduce an auxiliary field u(x) and consider the action

Sχ,u =

∫

dDx

[

∂χ∂χ + (m2 + 2π
√

g u)χχ − u2

4

]

, (4.2)

from which the original action Sχ is recovered when the field u is eliminated using its

equations of motion. Since χ now appears quadratically, one can perform the functional

integral over it to obtain

Z =

∫

DχDχDu e−Sχ,u ≡
∫

Du e−Seff , (4.3)

where

Seff = −N Tr log[−∂2 + m2 + 2π
√

g u(x)] −
∫

dDx
u2

4
, (4.4)

and we have used the identity log detA = Tr log A. Note that if χ were taken to be a

complex bosonic field, then the functional integral would give 1/det A rather than det A,

which amounts to the replacement N → −N in Seff . This suggests that some physical

quantities in the symplectic fermion model can be obtaining by flipping the sign of N in its

bosonic counterpart. However, we now demonstrate that this not correct for all physical

quantities; in particular, such a replacement does not hold for the free energy when one

takes into account the proper boundary conditions.

For the remainder of this section we will consider the non-interacting theory (g = 0). In

order to be able to perform the integrals and to compare with some known results, we also

set the mass m to zero. In the free theory the field u decouples, and the functional integral

over u just changes the overall normalization of the partition function Z. Discarding

this overall factor one obtains Z = exp
[

N Tr log(−∂2)
]

. The free energy density F =

−T log Z/V is then simply F = −N T
V Tr log(−∂2). With the Euclidean time compactified

on a circle of circumference β, the time component of the momentum is quantized, k0 =

(2πν/β), where ν is a Matsubara frequency. The functional trace is then

Tr log(−∂2) = V
∑

ν

∫

ddk

(2π)d
log

[

k2 + (2πν/β)2
]

. (4.5)
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In the Euclidean functional integral approach to finite temperature, one is required to

impose periodic boundary conditions for bosons and anti-periodic boundary conditions for

fermions. In order to illustrate an important point, let us first consider χ to be periodic,

i.e. ν an integer. It is a well-known identity that

∑

ν∈Z

log
[

k2 + (2πν/β)2
]

= βωk + 2 log(1 − e−βωk) , (4.6)

where ωk =
√

k2 for m = 0. The first term above gives a temperature-independent

contribution to the free energy, which we can discard by defining F such that it vanishes

at T = 0. The result is

F = −2NT

∫

ddk

(2π)d
log(1 − e−βωk) . (4.7)

In analogy with black-body formulas in four dimensions, let us define a coefficient cD

through

F = −cD
Γ(D/2) ζ(D)

πD/2
TD , (4.8)

where ζ is Riemann’s zeta function. The above normalization is such that cD = 1 for a

single free massless boson. Performing the integral in eq. (4.7) one obtains

cD = −2N (periodic b.c.) (4.9)

in any dimension D. The negative value of cD is normally a sign of non-unitarity. In two

dimensions, for unitary theories with zero ground-state energy, c2 is the Virasoro central

charge cvir of the conformal field theory [13], and cvir = −2 is the usual result for a single

symplectic fermion [14]. (For a precise, general relation between c2 and cvir see the end of

this section.) Note also that cD = −2N is simply the N → −N result for N free complex

massless bosons. This is to be expected, since we have computed it using the periodic

boundary conditions appropriate to bosons.

The result (4.9) is incompatible with the spectrum of particles computed in section II.

Clearly this is due to having taken the wrong boundary conditions for the fields. For

anti-periodic boundary conditions, ν is half-integer, and one has

∑

ν∈Z+1/2

log
[

k2 + (2πν/β)2
]

= βωk + 2 log(1 + e−βωk) (4.10)

instead of (4.6), leading to

F = −2NT

∫

ddk

(2π)d
log(1 + e−βωk) . (4.11)

It is clear from the above expression and basic results in quantum statistical mechanics

that this result corresponds to 2N free fermionic particles with one-particle energies ωk,

consistent with the quantization in section II. Performing the integral one finds

cD = 2N

(

1 − 1

2D−1

)

(anti-periodic b.c.) (4.12)
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in D dimensions. The thermal central charge cD is now positive and consistent with a

unitary theory; in fact, it is the same as for 2N real Dirac fermions.

A few additional remarks clarifying the well-studied 2D case are in order. Consider

the first-order action

Sb/c =

∫

d2x
(

b ∂zc + b ∂zc
)

, (4.13)

where z and z are Euclidean light-cone coordinates. Let us define Lorentz “spin” with

respect to Euclidean rotations, such that for a holomorphic field ψs(z) of spin s

ψs(e
2iπz) = e2iπs ψs(z) . (4.14)

With this convention, usual Dirac fermions have spin s = ±1
2 . Note that parameterizing

s = ϑ/(2π) implies that the spin s is defined modulo ϑ = 2π. Let us assign the following

spins to the b and c fields:

spin(b, c) =

(

s +
1

2
,−s +

1

2

)

, spin(b, c) =

(

s − 1

2
,−s − 1

2

)

. (4.15)

Then the Virasoro central charge is known to be c2 = 1 − 12s2 [15]. Identifying

b = ∂zχ
† , ∂zc = ∂zχ , b = ∂zχ

† , ∂zc = ∂zχ , (4.16)

then the above first-order action is equivalent to our symplectic fermion action with χ → χ†.

The above identifications are consistent with spin(χ) = −spin(χ†) = 1
2 − s (with ϑ defined

modulo 2π as above). The usual correspondence between symplectic fermions and first-

order actions is based on letting χ, χ† have spin 0, which implies s = 1
2 and c2 = −2 [14].

However another choice is spin(χ) = −spin(χ†) = 1
2 , which gives s = 0 and c2 = 1, as we

found above in the 2D case.

Another check in two dimensions goes as follows. The thermal central charge c2 in

this section is known to be related to the Virasoro central charge cvir by the formula

ceff = cvir−24∆min, where ∆min is the minimal conformal scaling dimension. In the twisted

(Ramond) sector of the symplectic fermion, the ground state is known to correspond to

the twist field with dimension ∆min = −1/8 [16] . Since twist fields modify boundary

conditions from periodic to anti-periodic, a consistency check is that the value c2 = 1 in

eq. (4.12) for N = 1 should correspond to ceff with cvir = −2 and ∆min = −1/8, and indeed

it does.

5. Renormalization group and critical exponents

We study the interacting critical point of the symplectic fermion theory described by the

Euclidean action in eq. (4.1), using a position-space approach based on the operator product

expansion (OPE). In the following section we will present an alternative derivation of

the critical exponents (extended to two-loop order) using a technique based on Feynman

diagrams familiar from quantum field theories for elementary particles.

Consider a general Euclidean action of the form

S = S0 + 4π2g

∫

dDxO(x) , (5.1)
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where S0 is conformally invariant, g is a coupling, and O a perturbing operator. For our

model, S0 is the massless free action and O = (χχ)2. To streamline the discussion, let [[X]]

denote the scaling dimension of X in energy units, including the non-anomalous classical

contribution which depends on D. An action S necessarily has [[S]] = 0. Using [[dDx]] =

−D, the classical dimensions of the fundamental couplings and fields are determined to be

[[χ]] = (D − 2)/2, [[m]] = 1, and [[g]] = 4 − D ≡ ε. Let us therefore define the quantum

corrections to the scaling dimensions γχ and γm as3

[[χ]] ≡ D − 2

2
+ γχ , [[m]] ≡ 1 + γm . (5.2)

At the critical point, γχ determines the two-point function of the χ fields via

〈χ†(x)χ(0)〉 ∼ 1

|x|D−2+2γχ
. (5.3)

The anomalous dimension γm can be used to define a correlation-length exponent ν. At

the critical point, the correlation length diverges as m → 0, i.e. ξ ∼ m−2ν . Using the fact

that [[ξ]] = −1, one has −2ν = [[ξ]]/[[m]], which implies

ν =
1

2(1 + γm)
. (5.4)

The lowest-order contributions to the β-function and the critical exponents are easily

calculated in position space. At first order in the ε-expansion, the OPE coefficients can be

computed in four dimensions. Consider first the β-function. Since O is a marginal operator

in D = 4 (classically [[O]] = 4), the OPE gives

O(x)O(y) =
C

4π4|x − y|4 O(y) + . . . (5.5)

for some coefficient C. Consider now the correlation function 〈X〉 for arbitrary X to second

order in g:

〈X〉 = 〈X〉0−4π2g

∫

d4x 〈X O(x)〉0 +
1

2
(4π2g)2

∫

d4x

∫

d4y 〈X O(x)O(y)〉0 + . . . , (5.6)

where the subscript 0 indicates that the correlation function is computed with respect to

the free action S0. Using the OPE (5.5) in the above expression along with
∫

a d4x/x4 =

−2π2 log a, where a is an ultraviolet cut-off, one finds

〈X〉 = 〈X〉0 − 4π2(g + Cg2 log a)

∫

d4x 〈X O(x)〉 + . . . . (5.7)

The ultraviolet divergence is removed by letting g → g(a) = g − Cg2 log a. This leads to

β(g) = − dg

d log a
= −εg + Cg2 + . . . , (5.8)

3This convention for γm differs by a minus sign from the one adopted in [8].
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where the leading term comes from the classical dimension of g. (Our convention for the

sign of the beta-function is as in high-energy physics, where increasing a corresponds to a

flow toward low energy.)

The above calculation easily generalizes to actions of the form

S = S0 + 4π2
∑

a

ga

∫

dDxOa(x) , (5.9)

which typically arise in anisotropic versions of our model. If the perturbing operators

satisfy the OPE

Oa(x)Ob(y) =
∑

c

Cab
c

4π4|x − y|4 Oc(y) + . . . , (5.10)

then the corresponding β-functions are

βa(g) = −εga +
∑

b,c

Cbc
a gbgc + . . . . (5.11)

Let us return now to our model. Using the OPE results

χi(x)χj(0) = −χi(x)χj(0) ∼ − δij

4π2|x|2 (5.12)

valid in four dimensions to evaluate (5.5) for O = (χχ)2, one finds C = 4− N which leads

to

β(g) = −εg + (4 − N)g2 + . . . . (5.13)

The model thus has a low-energy fixed point at g∗ ≈ ε/(4 − N).

Consider next the anomalous dimension of the symplectic fermion fields and of com-

posite operators built out of these fields. Let Φ(x) denote a field having the following OPE

with the perturbation:

O(y)Φ(x) =
B

8π4|x − y|4 Φ(y) + . . . (5.14)

for some coefficient B. Then to first order in g

〈Φ(0)〉 = 〈Φ(0)〉0 − 4π2g

∫

d4y 〈O(y)Φ(0)〉0 + . . .

= (1 + Bg log a) 〈Φ(0)〉0 + . . . ≈ aBg 〈Φ(0)〉0 . (5.15)

This implies an anomalous contribution γΦ to [[Φ]] given by γΦ = Bg+ . . .. For the operator

Φ = χχ, the OPE result (5.12) implies B = 1 − N . Finally, using 2[[m]] + [[χχ]] = D, one

has

γm = −1

2
γχχ =

N − 1

2
g + . . . . (5.16)

In the sequel it will also be of interest to consider other fermion bilinears of the form

nτ (x) = χ τ χ , (5.17)

where τ is a traceless matrix. This operator does not mix with χχ in the OPE (5.14) and

has an independent anomalous dimension γn. Repeating the above computation, one finds
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that because of the tracelessness of τ there is no contribution to this order proportional to

N , i.e., B = 1, and this leads to

γn = g + . . . . (5.18)

To the order we have computed so far, our results for the β-function and the anomalous

dimension γm are the same as for the O(M) Wilson-Fisher fixed point with the substitution

M = −2N . This evidently follows from the auxiliary-field construction in section IV:

bosons versus fermions differ by the overall sign of the logarithm of the determinant, which

amounts to N → −N in the effective action Seff in eq. (4.4). The factor of 2 in M = −2N

comes from the fact that χ is a complex field, whereas the O(M) model is formulated in

terms of M real fields. Though one may worry that this equivalence with exponents of

O(−2N) may be spoiled at higher orders for certain operators whose correlation functions

cannot be computed from Seff , we verify in the next section that the equivalence persists

to two-loop order. We thus expect it to hold to all orders in perturbation theory.4

6. Two-loop results

The simple position-space method of the last section does not extend straightforwardly

to higher orders. Here we describe an alternative calculation of the β-function and the

anomalous dimensions using Feynman graphs.

We consider the action (2.1) of an N -component symplectic fermion χ in Minkowski

space and express it in terms of bare parameters m0 and g0 and unrenormalized fields χα
0 :

Sχ =

∫

dDx
[

∂µχ0 ∂µχ0 − m2
0 χ0χ0 − 4π2g0(χ0χ0)

2
]

. (6.1)

The momentum-space Feynman rule for the four-fermion vertex with incoming fermions

χα, χβ and outgoing fermions χα, χβ is (−8π2ig0) if α 6= β, while it vanishes for α = β

due to the anti-commuting nature of the fields. The momentum-space propagator for the

fermion χα is diagonal in component indices and given by the ordinary Feynman propagator

for a scalar field, i/(p2 −m2
0 + i0). The mass term is kept in our calculations as an infrared

regulator.

The mass dimensions of the field and coupling are [[χ0]] = (D− 2)/2 and [[g0]] = 4−D.

We work in dimensional regularization and define the renormalized coupling g(µ) through

g0 = µ4−DZg(µ) g(µ), where µ2 ≡ µ2 eγE /(4π). The scale µ acts as an ultraviolet regula-

tor in momentum space. Our renormalization factors will be defined using the modified

minimal subtraction (MS) scheme in D = 4 − ε space-time dimensions.

4In [10] it was observed that the known O(M) exponents agree surprisingly well with the N = −M

(rather than N = −M/2) symplectic-fermion exponents at lowest order if one identifies the anomalous

dimension of the M -vector order parameter ~n as γn = 2γχ. Unfortunately, the next-order corrections

computed in the section VI spoil this agreement.
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Figure 1: Four-fermion vertex function relevant to the calculation of the β-function.

Figure 2: Tree-level contribution to the vertex function.

6.1 Calculation of the β-function

Standard field-theory arguments can be used to show that the β-function of our model is

given by

β(g,D) =
dg(µ)

d ln µ
= β(g) + (D − 4) g , (6.2)

where

β(g) = g2 dZ
(1)
g

dg
(6.3)

is independent of D. The quantity Z
(1)
g denotes the coefficient of the 1/ε pole in the Laurent

expansion of the renormalization factor near ε = 0. Throughout, we denote g ≡ g(µ) unless

otherwise noted.

The β-function is obtained from the four-fermion vertex function with ingoing and

outgoing component indices α 6= β, shown in figure 1. For simplicity we set the external

momenta to zero. The tree-level contribution to the vertex function is given by the ele-

mentary vertex shown in figure 2. At one-loop order there is a single loop topology but

three different contractions of indices, depicted in figure 3, which yield a multiplicity factor

of (4 − N). At two-loop order there are three loop topologies, whose multiplicities can be

obtained by analyzing the various possible contractions. The relevant diagrams and their

group-theory factors are depicted in figure 4. The two-loop scalar integrals required for

our calculation can be obtained from [17].

Adding up the results for the various diagrams we obtain the bare vertex function.

We then multiply this result by Z2
χ to account for wave-function renormalization, and

substitute m2
0 = Zm2 m2 and g0 = µ4−DZg g to implement mass and coupling-constant
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4−N

=>

Figure 3: One-loop contributions to the vertex function. The three graphs give rise to the

same loop topology, shown on the right. The group-theory factors of the individual diagrams are

−(N − 2), 1, 1, where the minus sign of the first graph results from the closed fermion loop.

2(1−N)(4−N) 22−10NN  −3N+52

Figure 4: Two-loop topologies for the vertex function. Each topology receives contributions from

several diagrams. The combined group-theory factors are listed below each graph.

renormalization. The renormalization factors Zχ and Zm2 are determined from the calcu-

lation of the fermion self-energy in the next subsection. By requiring that the renormalized

vertex function be finite, we extract

Zg = 1 +
4 − N

ε
g +

[

(4 − N)2

ε2
+

3(3N − 7)

4ε

]

g2 + O(g3) . (6.4)

From eq. (6.3) we then obtain for the β-function

β(g) = (4 − N) g2 +
3(3N − 7)

2
g3 + O(g4) . (6.5)

The D-dimensional β-function in (6.2) has a non-trivial fixed point at positive coupling

given by the solution to the equation β(g∗)/g∗ = 4 − D = ε. At second order in the ε-

expansion, we find

g∗ =
ε

4 − N
+

3(7 − 3N)

2(4 − N)3
ε2 + O(ε3) . (6.6)

6.2 Calculation of the self-energy

Next we need the anomalous dimension of the fermion mass and field. They follow from a

two-loop calculation of the self-energy Σ(p2,m2
0) in the vicinity of the mass shell (p2 = m2).
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Figure 5: One- and two-loop diagrams contributing to the fermion self-energy.

Here m0 and m are the bare and renormalized mass parameters, respectively. The relevant

relations are

m2 = m2
0 + Σ(m2,m2

0) , Z−1
χ = 1 − Σ′(m2,m2

0) , (6.7)

where the prime denotes a derivative with respect to the first argument, p2. Inserting here

m2
0 = Zm2m2, one finds for the renormalization factors

Zm2 = 1 − Σ(m2, Zm2m2)

m2
, Z−1

χ = 1 − Σ′(m2, Zm2m2) . (6.8)

At one-loop order there is a single tadpole graph to evaluate, while at two-loop order

we have a double tadpole diagram and the sunrise diagram, see figure 5. After accounting

for coupling-constant renormalization using eq. (6.4), we obtain

Zm2 = 1 +
1 − N

ε
g + (1 − N)

(

5 − 2N

2ε2
− 5

8ε

)

g2 + O(g3) ,

Zχ = 1 − 1 − N

8ε
g2 + O(g3) . (6.9)

The anomalous dimensions of the mass and field are given by

γm2 = −g
dZ

(1)
m2

dg
, γχ = −g

2

dZ
(1)
χ

dg
, (6.10)

where in the second relation we take into account that χ0 =
√

Zχ χ. We find

γm2 = 2γm = (N − 1) g

(

1 − 5

4
g

)

+ O(g3) ,

γχ =
(1 − N)

8
g2 + O(g3) . (6.11)

The anomalous dimension of the field starts at two-loop order. Instead of the anomalous

dimension of m2 one could compute the anomalous dimension of the fermion bilinear χχ,

which is given by γχχ = −γm2 .

Evaluating our expressions at the fixed-point value of the coupling yields

γm =
(N − 1)

2(4 − N)
ε

[

1 +
22 − 13N

4(4 − N)2
ε

]

+ O(ε3) ,

γχ =
(1 − N)

8(4 − N)2
ε2 + O(ε3) . (6.12)
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As a crosscheck of our results, we note that the two-loop expressions for the β-function

and anomalous dimensions obtained in eqs. (6.5) and (6.11) go over to the corresponding

results of O(M) scalar field theory (see e.g. [18]) if we identify M = −2N . Likewise, the

fixed-point of the fermionic β-function in eq. (6.6) is related to the Wilson-Fisher fixed

point [7] by the same replacement rule. In some sense, our symplectic fermion theory may

thus be considered as an analytic continuation of scalar O(M) field theory to negative M .

However, as emphasized in section IV, this simple correspondence is not expected to hold

for all physical quantities, once nonperturbative effects are taken into account.

6.3 Renormalization of the composite bilinear nτ

The diagrams contributing to the renormalization of the composite operator nτ = χ τ χ

defined in eq. (5.17) can be obtained by inserting this operator into the one- and two-loop

graphs for the fermion self-energy shown in figure 5. In the evaluation of these graphs it is

important to use that the matrix τ is traceless. Writing the bare current as (nτ )0 = Znnτ ,

we obtain

Zn = 1 − g

ε
+

(

−3 − N

2ε2
+

5 − N

8ε

)

g2 + O(g3) . (6.13)

The anomalous dimension of the current is thus

γn = g − 5 − N

4
g2 + O(g3) . (6.14)

At the fixed point, this yields

γn =
ε

4 − N
+

(2 − N)(11 + N)

4(4 − N)3
ε2 + O(ε3) . (6.15)

This result will become important for the discussion in the following section.

7. Possible applications

In this section, we speculate on possible applications of the above results. The most

interesting context is quantum criticality in d = 2 spacial dimensions (i.e., D = 3). In the

broadest terms, since the particles have spin 1
2 , our model can describe a quantum critical

theory of spinons.

Whereas the Mermin-Wagner theorem rules out continuous phase transitions at fi-

nite temperature in d = 2, zero temperature quantum phase transitions continue to be of

great interest. The best studied example is the quantum phase transition in 2d Heisenberg

magnets, which is in the universality class of the O(3) Wilson-Fisher fixed point [19, 20].

One feature of our model is that it can describe quantum critical points wherein the mag-

netic order parameter ~n is a composite operator in terms of the more fundamental fermion

fields. This could in principle have applications to quantum phase transitions in the anti-

ferromagnetic phase of Hubbard-like models, where the magnetic order parameter is a bi-

linear in the electron fields. As stated in the introduction, if such electrons were described

by the Dirac theory, the four-fermion interactions are irrelevant and do not generally lead
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to a low-energy interacting fixed point. That this is different in the case of symplectic

fermions was the primary motivation for our work.

Let us first review the definitions of the exponents for the usual Wilson-Fisher fixed

point. The order parameter is an M -component real vector ~n with action

SWF =

∫

dDx
[

∂~n · ∂~n + m2 ~n · ~n + λ (~n · ~n)2
]

. (7.1)

Some of the exponents are defined with respect to perturbations away from the critical

point. Namely, consider

S = S∗ +

∫

dDx
(

tOε + ~B · ~n
)

, (7.2)

where S∗ is the critical theory, Oε is the “energy operator”, and ~B a magnetic field. For

applications to classical statistical mechanics in 3D one identifies Oε = ~n ·~n and t = T −Tc,

so that t ∝ m2. The usual definition of the correlation-length exponent νǫ via ξ ∼ t−νε

then leads to

νε =
1

[[t]]
=

1

D − [[Oε]]
. (7.3)

The second fundamental exponent is related to the scaling dimension of ~n. It is con-

ventional to parameterize this with η in the form

[[~n]] =
D − 2

2
+

η

2
, (7.4)

so that the two-point function at the critical point scales as

〈~n(x) · ~n(0)〉 ∼ 1

|x|D−2+η
. (7.5)

The convention for the leading contribution to [[~n]] comes from the action (7.1), which

implies that classically ~n has dimension (D − 2)/2. The parameter η is then given as

η = 2γ~n, where γ~n is the quantum anomalous correction to the scaling dimension of ~n.

The third exponent characterize the one-point function of ~n via

〈~n〉 ∼ tβ ∼ B1/δ, (7.6)

which leads to

β =
[[~n]]

[[t]]
=

νε

2
(D − 2 + η) . (7.7)

Treating ~B as a coupling gives [[B]] + [[~n]] = D, from which it follows that

δ =
[[B]]

[[~n]]
=

D + 2 − η

D − 2 + η
. (7.8)

For the remainder of this section we consider the special case where N = 2. In

discussions of deconfined quantum criticality [9], for the case of O(3) symmetry, the 3-

vector ~n is represented as a bilinear in “spinon fields” χ, i.e. ~n = χ†~σ χ, where here χ

is an N = 2 component complex field and ~σ are the Pauli matrices. Note that ~n is an
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example of an operator nτ defined in (5.17). For N = 2, the above representation of ~n is

consistent irrespective of whether χ is a boson or fermion, so we will treat both cases in

parallel. If ~n is a rotational 3-vector, then χ is a spin-1
2 doublet. This identification of spin

is different than in section III, and is instead based on the SU(2) sub-algebra generated by

{1 ⊗ A,σz ⊗ tz}, where tz is traceless and symmetric (see section III for notations).

Simple considerations based on the renormalization group point to a possibly special

role played by the N = 2 fermion theory. Suppose a model formulated in terms of an

O(3) ~n field is asymptotically free in the ultraviolet region. Then the coefficient of the free

energy cD described in section IV equals 3 for any D. On the other hand, free χ fields

give c3 = 3N/2 by formula (4.12) in 3D. which is the same as for the O(3) ~n theory when

N = 2. Therefore, the free energies match up properly in the ultraviolet for an O(3) ~n field

and an N = 2 symplectic fermion.

The model proposed in [9] is based on the CP 1 representation of the non-linear O(3)

sigma model, which involves an auxiliary U(1) gauge field. The CP 1 model is then modified

by relaxing the non-linear constraint ~n ·~n = χ†χ = 1 and making the gauge field dynamical

by adding a Maxwell term, effectively turning the model into an abelian Higgs model. One

appealing feature of this model is that because of the equivalence of CP 1 and O(3) non-

linear sigma models (at least classically), without the Maxwell term one has an explicit

map between the non-linear ~n field and χ-field actions. Though this model is a natural

candidate for a deconfined quantum critical point, unfortunately the fixed point is difficult

to study perturbatively, so it has not been possible to accurately compare exponents with

the simulations reported in [21, 22].

Let us broaden the notion of deconfined quantum criticality to simply refer to a quan-

tum critical point for an O(3) vector order-parameter ~n, where ~n is composite in terms

of spinon fields χ. The fields χ are interpreted as the fundamental underlying degrees of

freedom, and the critical theory S∗ in eq. (7.2) is the critical theory for χ. The critical

exponents ν, η, β, and δ defined above are then related to scaling dimensions of composite

operators in the S∗ theory.

The anomalous dimension of ~n in the epsilon expansion follows from the results in

section VI and will be denoted γ~n in what follows. Let us first consider the case where χ

is a bosonic field. As explained above, the exponents for bosonic verses fermionic theories

are simply related by N → −N . Specializing eq. (6.15) to N = −2 in 3D (ε = 1) one finds

γ~n ≈ 0.21 for bosonic χ. This is quite large compared to the analogous result γ~n ≈ 0.02

for the O(3) Wilson-Fisher fixed point. (The latter is well-known; as explained in section

V, it corresponds to γχ at N = −3/2.) For χ a fermion, interestingly the O(ε2) correction

to the leading one-loop result vanishes for N = 2, so that γ~n = 1/2. We can give an

alternative estimate of γ~n by simply substituting g∗ = 11/16 from eq. (6.6) into (6.14)

without expanding in ε. This gives γ~n ≈ 0.33 for fermionic χ. For both the bosonic and

fermionic cases, the largeness of γ~n compared with the usual O(3) fixed point is due to

the compositeness of ~n. If we naturally identify Oε with χχ, then the correlation-length

exponent νε is given by eqs. (5.4) and (6.12) evaluated with N = ±2. This leads to

νε ≈ 0.75 (bosonic) , νε ≈ 0.42 (fermionic) . (7.9)
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There are at least two difficulties encountered if we attempt to compare with existing

numerical simulations, such as those in [21, 22]. The main one is that the simulations

are performed with an action for the ~n field or for local lattice spin variables ~Si with a

Heisenberg-like hamiltonian, rather than with fundamental spinon degrees of freedom χ,

and we do not have a direct map between the two descriptions. In particular, in a theory

with fundamental χ fields and the compositeness relation ~n = χ†~σ χ, since χ has classical

dimension (D − 2)/2, one has

[[~n]] = D − 2 + γ~n . (7.10)

Comparing with eq. (7.4) one finds η = D−2+2γ~n rather than the usual relation η = 2γ~n.

In other words, η now contains a purely classical contribution of D−2, and this was used to

argue that the η exponent was large in [9]. On the other hand, simulations based on ~n-field

actions effectively force the classical contribution to [[~n]] to be (D − 2)/2 as in the Wilson-

Fisher theory, suggesting that simulations measure η = 2γ~n. In the fermionic theory,

support for this idea comes from the fact that the two lowest orders of the ε expansion give

γ~n = 1/2 in D = 3.

The other difficulty is that, unlike for temperature phase transitions where t = T −Tc,

in the context of zero temperature quantum critical points it is not obvious what plays

the role of the parameter t, or equivalently, the energy operator Oε that determines the

correlation-length exponent. In this context, t is a parameter in the hamiltonian that is

tuned to the critical point. The most natural choice is Oε = χχ which implies t = m2 and

leads to eq. (7.9). However, another possibility could be t = m, which would lead to twice

the values in eq. (7.9), corresponding to νε = 1/(1 + γm).

The above difficulties prevent us from establishing a definite connection with the sim-

ulations in [21, 22]. In fact, the exponents for deconfined quantum criticality are currently

controversial, since the two above works disagree strongly on the value of the exponent η.

However, we point out that if one identifies η = 2γ~n, then our computed exponents are not

inconsistent with some of the exponents in [21, 22], although the comparison is not con-

clusive. More specifically, the work [21] reports η ≈ 0.6-0.7 and ν = 0.8-1.0. On the other

hand, for a different model [22], it was found that η = 0.26±0.03 and ν = 0.78±0.03. Both

simulations are consistent with νε in eq. (7.9) for a bosonic spinon and t = m2. However,

they are also consistent with a fermionic spinon with t = m. Our formulas give η ≈ 0.67

and η ≈ 0.42 for fermions and bosons, respectively.

8. Conclusions

To summarize, we proposed that spin-1
2 particles can be described by a symplectic fermion

quantum field theory as an alternative to the Dirac theory if one demands only rotational

invariance rather than the full Lorentz invariance. The resulting lagrangian has a form re-

sembling that of a scalar field but with the “wrong” statistics. A hidden Sp(2N) symmetry

allows identification of spin via an SO(3) subgroup for any N , so that the statistics of the

field is consistent with the spin-statistics connection for spin-1
2 particles. The hamiltonian

is pseudo-hermitian, and this is sufficient to guarantee a unitary time evolution. The usual
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spin-statistics theorem for this kind of field theory is circumvented, because the proof of

the latter does not allow for a pseudo-hermitian hamiltonian.

We have analyzed the renormalization-group properties and critical exponents of the

symplectic fermion model up to two-loop order. The anomalous dimensions and β-function

of the Sp(2N) model are related to those of the O(M) Wilson-Fisher model by setting

M = −2N . This correspondence between O(M) and Sp(2N) models does not hold for all

physical properties however. In addition to the usual exponents, we have also computed

exponents for fields that are bilinear in the fundamental spinon fields.

The potentially most interesting possible applications of our theory are to quantum

critical spinons in d = 2 spacial dimensions. We have computed the critical exponents

for “magnetic” order parameters that are quadratic in the spinon fields, as in models of

deconfined quantum criticality. Comparison with existing numerical simulations is to some

extent favorable, but not yet conclusive.
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